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PRECIS: The aim of the study is to increase the accuracy rate in prenatal screening processes, and it is expected to contribute to reducing 
unnecessary invasive tests and improving clinical decision-making processes.
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Abstract

Objective: One of the most common chromosomal abnormalities seen during pregnancy is Down syndrome (Trisomy 21). To determine the risk of Down 
syndrome, first-trimester combined screening tests are essential. Using data from the first-trimester screening test, this study compares machine learning 
and deep learning models to forecast the risk of Down syndrome.

Materials and Methods: Within the scope of the study, biochemical and biophysical data of 959 pregnant women who underwent first-trimester screening 
tests at Çukurova University Obstetrics and Gynecology Clinic between 2020-2024 were analyzed. After cleaning missing and erroneous data, various 
preprocessing and normalization techniques were applied to the final dataset consisting of 853 observations. Down syndrome risk prediction was performed 
using different machine learning models, and model performances were compared based on accuracy rates and other evaluation metrics.

Results: Experimental results show that the CatBoost model provides the highest success rate, with an accuracy rate of 95.31%. In addition, the XGBoost 
and LightGBM models exhibited high performance, with accuracy rates of 95.19% and 94.84%, respectively. The study also examines the effects of the class 
imbalance problem on model performance in detail and evaluates various strategies to reduce this imbalance.

Conclusion: The findings show that gradient boosting-based machine learning models have significant potential in Down syndrome risk prediction. This 
approach is expected to contribute to the reduction of unnecessary invasive tests and improve clinical decision-making processes by increasing the accuracy 
rate in prenatal screening processes. Future studies should aim to increase the generalization capacity of the model on larger data sets and to provide 
integration with different machine learning algorithms.
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Introduction

Down syndrome (DS) is one of the most common chromosomal 
abnormalities in humans. It affects individuals regardless of 
race, age, or socioeconomic status. The condition occurs due 
to a genetic anomaly in which an extra chromosome is present 
in the 21st pair, resulting in a total of 47 chromosomes. The 
incidence rate is estimated to be approximately 1 in every 600 
to 800 live births(1,2). DS is associated with various physical, 
cognitive, and developmental challenges, along with a range 
of health complications. Studies have shown that increasing 
maternal age significantly elevates the risk of DS. Nevertheless, 
early diagnosis and appropriate management are achievable 
through prenatal screening tests and genetic counseling.
First-trimester screening (FTS) is a fundamental method for the 
early detection of DS. This approach integrates maternal serum 
biomarkers, including free beta-human chorionic gonadotropin 
(β-hCG) and pregnancy-associated plasma protein A (PAPP-A), 
with ultrasound-based parameters such as nuchal translucency 
(NT), crown-rump length (CRL), and the absence or presence 
of the nasal bone. NT measurements are typically performed 
between the 11th and 14th weeks of gestation. In cases of DS, 
β-hCG levels are often elevated, whereas PAPP-A levels tend 
to be reduced. In contrast, Trisomy 18 and Trisomy 13 are 
generally associated with lower levels of both markers(3,4).
Accurate interpretation of screening results requires a clear 
understanding of the multiple of the median (MoM) method. 
This approach standardizes test values by dividing each 
measurement by the median value corresponding to the specific 
gestational week(5). Indicators of high risk for DS include a NT 
measurement greater than 2.5 millimeters, absence of the nasal 
bone, a PAPP-A level below 0.4 MoM, and a β-hCG level above 
2.5 MoM. When NT is 3 millimeters or greater or exceeds the 
99th percentile, further fetal evaluation and genetic counseling 
are strongly recommended. In such cases, additional risk 

assessment using cell-free fetal DNA (cfDNA) analysis and 
confirmatory diagnostic testing should also be considered(6).
Combined screening tests performed between the 11th and 
14th weeks of pregnancy typically yield a false-positive rate 
of approximately 5 percent and an overall accuracy rate 
approaching 90 percent. Based on these results, risk levels 
are categorized as high (equal to or greater than 1 in 250), 
moderate (between 1 in 250 and 1 in 1000), or low (equal to 
or less than 1 in 1000)(7,8). If the screening results are abnormal, 
amniocentesis is usually recommended. This invasive 
procedure, typically conducted between the 15th and 20th weeks 
of gestation, involves extracting fetal cells from the amniotic 
fluid for genetic analysis(9). Although it is considered a reliable 
diagnostic method, amniocentesis carries a small risk of fetal 
loss. These risks, while infrequent, emphasize the importance 
of developing more accurate and non-invasive alternatives(10).
In predictive classification, the combination of NT 
measurements with serum biomarkers enhances the accuracy 
of DS risk assessment. Artificial intelligence (AI) models are 
capable of identifying complex patterns within such data, 
allowing for more precise classification of risk levels(11). AI, 
particularly through machine learning (ML) and deep learning 
(DL) approaches, facilitates the analysis of large and complex 
datasets across various disciplines(12). In the field of healthcare, 
these technologies have led to faster diagnoses and more 
efficient treatment planning(13).
Conventional DS screening methods may be subject to errors 
due to limitations in clinical expertise or access to advanced 
technology. In some cases, families may also decline NT 
measurement because of cultural or personal beliefs. This study 
integrates both biophysical markers (NT) and biochemical 
indicators (hCG and PAPP-A) to assess DS risk. The primary 
objective is to develop a model that reduces the impact of 
geographic variability and increases the robustness of predictions 
despite potential test inaccuracies. Data were collected from 

Öz

Amaç: Down sendromu (Trizomi 21), prenatal dönemde en sık rastlanan kromozomal anomalilerden biridir. Gebeliğin birinci trimesterinde uygulanan 
kombine tarama testleri, Down sendromu riskinin belirlenmesi için önemli bir araç olarak kullanılmaktadır. Bu çalışma, birinci trimester tarama testi verileri 
kullanılarak Down sendromu riskini tahmin etmek amacıyla farklı makine öğrenmesi ve derin öğrenme modellerini karşılaştırmalı olarak değerlendirmeyi 
amaçlamaktadır.

Gereç ve Yöntemler: Çalışma kapsamında, 2020-2024 yılları arasında Çukurova Üniversitesi Kadın Doğum Kliniği’nde birinci trimester tarama testine tabi 
tutulan 959 gebeye ait biyokimyasal ve biyofiziksel verileri analiz edilmiştir. Eksik ve hatalı veriler temizlendikten sonra, 853 gözlemden oluşan nihai veri 
seti üzerinde çeşitli ön işleme ve normalizasyon teknikleri uygulanmıştır. Farklı makine öğrenmesi modelleri kullanılarak Down sendromu risk tahmini 
gerçekleştirilmiş, model performansları doğruluk oranları ve diğer değerlendirme metrikleri üzerinden karşılaştırılmıştır.

Bulgular: Deneysel sonuçlar, CatBoost modelinin %95,31 doğruluk oranı ile en yüksek başarıyı sağladığını göstermiştir. Bunun yanı sıra, XGBoost ve 
LightGBM modelleri sırasıyla %95,19 ve %94,84 doğruluk oranları ile yüksek performans sergilemiştir. Çalışmada ayrıca sınıf dengesizliği probleminin 
model performansı üzerindeki etkileri detaylı olarak incelenmiş ve bu dengesizliği azaltmaya yönelik çeşitli stratejiler değerlendirilmiştir.

Sonuç: Elde edilen bulgular, gradient boosting tabanlı makine öğrenmesi modellerinin Down sendromu risk tahmininde önemli bir potansiyele sahip 
olduğunu göstermektedir. Bu yaklaşımın, prenatal tarama süreçlerindeki doğruluk oranını artırarak, gereksiz invaziv testlerin azaltılmasına ve klinik 
karar alma süreçlerinin iyileştirilmesine katkı sağlaması beklenmektedir. Gelecekteki çalışmalar, daha geniş veri setleri üzerinde modelin genelleştirme 
kapasitesini artırmayı ve farklı makine öğrenmesi algoritmalarıyla entegrasyon sağlamayı hedeflemelidir.

Anahtar Kelimeler: Down sendromu, ilk trimester tarama testi, gradyan güçlendirme, makine öğrenmesi, yapay zeka, sınıflandırma algoritmaları
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959 singleton pregnancies at Çukurova University between 
2020 and 2024. After preprocessing, the dataset was used 
to train AI-based classification models. The outcomes aim to 
enhance diagnostic accuracy and assist clinicians in prenatal 
risk evaluation and decision-making.

Materials and Methods 

This study effectively estimates the risk of DS, contributing 
to the health and general well-being of both the mother and 
the unborn child. The following sections comprehensively 
explain the applied methodological approaches and present the 
findings, demonstrating the accuracy and clinical significance 
of the results.

Dataset and Preprocessing

This study analyzed data obtained from the combined double 
screening tests of 959 women with singleton pregnancies in the 
first trimester at the Obstetrics and Gynecology Unit of Çukurova 
University between 2020 and 2024. The study protocol and data 
collection process were reviewed and approved by the Çukurova 
University Faculty of Medicine Research Ethics Committee in 
accordance with ethical standards (approval number: 144, date: 
10.05.2024). Patient records were retrieved from the hospital’s 
gynecology and obstetrics clinic as well as the biochemistry 
laboratories. To ensure confidentiality and compliance with 
ethical regulations, all patient data were anonymized, and 
no personally identifiable information was used at any stage. 
Details of the dataset and the variables included in the analysis 
are presented in Table 1.
Prior to the development of the AI model for risk estimation, 
several preprocessing steps were applied to the dataset to 
address missing data and improve data quality. Erroneous 
entries were corrected, and records with duplicate or missing 
values were excluded. As a result, the initial dataset of 959 
records was reduced to 853 valid entries. To improve model 
accuracy, the distribution of the target variable (DS risk class) 
was examined. The final dataset included 195 samples (22.9%) 
classified as medium risk, 474 samples (55.6%) as low risk, and 
184 samples (21.6%) as high risk. The categorical distribution 
of the target variable is illustrated in Figure 1.

Normalization(14)

The normalization process was used to improve the model’s 
accuracy and stability because the data set’s of the independent 
variables in the study’s data set varying value ranges could 
cause a scale difference between the variables. Normalization 
contributes to the stable and efficient operation of ML algorithms 
by ensuring that the variables are represented on the same 
scale. Different transformation techniques were evaluated for 
the target and independent variables in the data preprocessing 
stage, and appropriate methods were determined.
In particular, since the target variable is categorical, the 
label encoding method was preferred for the appropriate 
transformation of the classes. This method allows ML 
algorithms to process categorical variables more effectively by 
converting them to numerical values. In the scaling process 
of the independent variables, three different normalization 
techniques were tested:
Minimum-Maximum Scaler: This method scales variables to a 
specific range (usually between 0 and 1) to ensure all features 
remain within the same limits. Min-max scaling is especially 
effective when the data is concentrated in a particular range and 
is preferred when distribution distortion needs to be prevented.

Table 1. The attributes explanation of the collected dataset

Attribute Description Data type

hCG-MoM
Human chorionic gonadotropin (hCG), method of medians (MoM). hCG is a hormone secreted by the 
placenta during pregnancy and is found at high levels in the early stages of pregnancy. The MoM value is 
obtained by dividing the measured value by the average value for the corresponding gestational week.

Numeric

PAPP-A MoM
Pregnancy-associated plasma protein A (PAPP-A) is a protein produced by the placenta during pregnancy, 
known as PAPP-A.

Numeric

NT Nuchal translucency (NT) is the measurement of the thickness of the fetal neck obtained via ultrasound. Numeric

NT MoM It is calculated by dividing the NT value by the average value for the corresponding gestational week. Numeric

DS
Down syndrome risk classification is as follows: a ratio below 1:250 is considered high risk (high), between 
1:250 and 1:1000 is classified as medium risk (medium), and above 1:1000 is categorized as low risk (low).

Categorical

Figure 1. Distribution of the Down syndrome attribute in basic 
dataset
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Standard Scaler: This method standardizes the mean of the 
variables to 0, and the standard deviation to 1, resulting in 
a standard normal distribution. It is an effective technique, 
especially for variables with a normal distribution, and is widely 
used for many ML algorithms.
Robust Scaler: This approach, which applies data scaling 
based on the median and interquartile range, was designed to 
minimize sensitivity to outliers. Transforming the data using 
central tendency measures reduces the negative impact of 
extreme values on the model. Comparisons conducted within 
the scope of the study revealed that the Robust Scaler method 
yielded the most successful results, particularly in cases where 
outliers were present in the dataset.
As a result of this process, the scaling of the data set was 
completed, and the model’s performance was intended to 
improve. The normalization process allows the model to 
learn faster and more stably while improving its prediction 
performance.

AI Classification Models

In this study, a comprehensive selection of AI-based classification 
models was utilized to evaluate their predictive performance 
in assessing DS risk. The models were chosen based on their 
demonstrated effectiveness in addressing class imbalance, 
capturing complex non-linear relationships among variables, 
and performing well in clinical risk classification contexts.
The classifiers were selected with careful consideration of the 
dataset’s characteristics, including its numerical structure, class 
imbalance, and risk-based output labels. Tree-based ensemble 
methods such as CatBoost, XGBoost, and LightGBM were 
included due to their ability to handle structured clinical data 
effectively. These models are known for their robustness against 
outliers, high predictive accuracy, and efficient processing in 

large datasets. Their successful application in previous prenatal 
and healthcare-related classification tasks further supports their 
appropriateness for this study.
An overview of the models and their technical characteristics is 
provided in Table 2. 

Proposed Approach

This study proposes a novel diagnostic approach for early DS 
risk assessment by integrating biochemical markers (hCG and 
PAPP-A) and a biophysical parameter (NT) obtained from the 
combined FTS. These markers were selected based on their well-
established roles in prenatal screening. While hCG and PAPP-A 
provide insights into biochemical deviations associated with 
chromosomal abnormalities, NT offers a structural sonographic 
dimension. Combining these complementary features enhances 
the reliability of early risk estimation.
The novelty of the proposed method lies in the application of 
advanced AI-based classification models, which go beyond the 
static threshold-based decisions of traditional screening tools. 
Unlike conventional methods, the AI-supported approach can 
capture complex, non-linear interactions between features, 
enabling more precise and individualized risk stratification. 
This is particularly important in cases where conventional cut-
off values may misclassify borderline or atypical presentations.
In addition, the proposed model addresses specific limitations 
such as operator dependency in NT measurements and 
potential false reassurance in low-risk cases. By leveraging the 
learning capabilities of ML algorithms, the model contributes 
to improving diagnostic robustness and reducing unnecessary 
invasive procedures. 
The general architecture of the proposed methodology is 
presented in Figure 2.

Table 2. Classification models used in the study and their explanations

Model Algorithm category Framework/library Purpose

Extreme gradient boosting(15) Gradient boosting XGBoost Classification tasks with high performance.

Light gradient boosting 
machine(16) Gradient boosting LightGBM Efficient gradient boosting for large datasets.

Categorical boosting (CatBoost)(17) Gradient boosting CatBoost Handles categorical features automatically.

K-nearest neighbors (KNN)(18) Instance-based scikit-learn Simple classifier based on distance metrics.

Naive bayes (NB)(19) Probabilistic scikit-learn Based on Bayes’ theorem, handles continuous data.

Logistic regression (LR)(20) Linear model scikit-learn Binary and multiclass classification.

Support vector machine (SVM)(21) Support vector machine scikit-learn Classification with margin maximization.

Decision tree (DT)(22) Tree-based scikit-learn Simple, interpretable decision rules.

Random forest (RF)(23) Ensemble (bagging) scikit-learn Combines multiple decision trees for accuracy.

Adaptive boosting (AdaBoost)(24) Ensemble (boosting) scikit-learn Boosting technique to improve weak classifiers.

CNN(12) Deep learning TensorFlow/Keras Pattern recognition in high-dimensional data.

LSTM(12) Deep learning (recurrent 
neural networks)

TensorFlow/Keras Sequence modeling for time series or text.
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Results

The study used ten distinct ML and two DL classifiers to 
evaluate the suggested strategy’s effectiveness. The k-fold 
cross-validation method (k=5) was selected to assess the ML 
classifiers. Accuracy, Precision, Recall, and F1-score, among the 
widely used evaluation criteria, were used as the performance 
scale of the ML classifiers(12,25).
As can be seen in Figure 3, the highest accuracy performance 
was obtained with Boosting-based methods. After the 
comparison, CatBoost obtained the best performance with an 
accuracy of 95.31%. XGBoost came in second with 95.19%, 
and LightGBM came in third with 94.84%. In this study, which 

primarily worked with numerical data, tree-based ML models 
such as CatBoost and XGBoost were preferred due to their 
robustness against outliers and strong generalization capacity. 
These models exhibit high performance in learning complex 
relationships, different features in the dataset, and can capture 
interactions between variables. In addition, imbalances in the 
class distribution in the dataset can be managed more effectively 
thanks to the flexible structure of tree-based models. Such 
models can make more balanced and adaptable predictions 
for each class through the use of decision trees to determine 
patterns in the dataset. In addition, the LightGBM model works 
with high speed, and low memory usage on large data sets, 
making it practical to prefer this model.
Because of the unequal distribution of classes, it is important 
to look at the metrics for each class separately. It is essential 
to analyze the performance metrics specific to each class to 
understand the effectiveness of the ML models used in this 
study. Specifically, for imbalanced datasets, the model’s capacity 
to discriminate between classes may vary, substantially impacts 
performance metrics. To evaluate the model’s overall efficacy 
and performance for each class, accuracy, recall, precision, 
and F1 scores were carefully examined. The following graphs 
were created to enable more accurate comparison and visual 
depiction of the model’s performance by class. By highlighting 
the model’s advantages and disadvantages for various classes, 
these visualizations provide insights for improvement strategies.
As seen in Figure 4, the overestimation of the low class and the 
underestimation of the other classes are due to the imbalance of 
the class distribution in the dataset and how the model adapts 
to this imbalance. This is critical in understanding the model’s 
learning bias towards certain classes, especially when working 
with imbalanced datasets. An imbalanced class distribution 
can cause the model to give more weight to the majority class 
and fail to learn rare classes well enough. Therefore, when 
evaluating the model’s success for each class, it is important to 
examine how the predictions are distributed on a class basis. 
Different balancing techniques should be applied in line with 
these results, and performance improvement strategies should 
be developed to increase the model’s sensitivity to imbalanced 
datasets.

Discussions

This study introduces a ML approach to predict the risk of 
DS using first-trimester combined screening test (FTS) data. 
The dataset analysis involves comparing various ML models, 
incorporating biochemical (hCG, PAPP-A) and biophysical 
(NT) parameters. AI has changed the world’s agenda in recent 
years, and its use will become increasingly widespread in all 
areas in the coming years. There are few publications in the 
literature about the use of AI in obstetrics.
Neocleous et al.(26) developed an AI model that utilizes various 
features to assess the risk of aneuploidy and other chromosomal 
abnormalities. This model incorporates several variables, such 

Figure 2. Flowchart of the proposed approach

Figure 3. Accuracy performance comparison of classification 
models
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as maternal age, the presence of a nasal bone, biochemical 
markers, (β-HCG, PAPP-A MoM), ultrasound measurements 
during pregnancy (CRL), NT, and a history of DS in prior 
pregnancies. These parameters were examined using ML 
algorithms to determine the probability of fetal abnormalities. 
The study emphasizes how important, ML is for identifying and 
evaluating the risks associated with chromosomal abnormalities.
Koivu et al.(27) used the support vector machine (SVM) model 
to improve the precision of fetal DS screening. The SVM 
algorithm works exceptionally well with multidimensional 
data, making it ideal for intricate analyses such as identifying 
fetal abnormalities. Meanwhile, Subasi(20) conducted fetal 

aneuploidy screening using non-invasive prenatal testing 
(NIPT) and fetal DNA (cffDNA) found in maternal blood. Their 
study significantly contributed to advancements in prenatal 
screening techniques by improving the accuracy of genetic tests 
and offering noninvasive alternatives to traditional diagnostic 
methods.
Durmuşoğlu et al.(11) proposed a ML model based on triple 
test indicators obtained from Gaziantep University, Turkey. 
This model aims to obtain more reliable results by avoiding 
the adverse effects of the triple test. The authors used nine 
ML models in the study and applied the SMOTE technique 
to generate synthetic data due to insufficient datasets. This 

Figure 4. Performances of the classification models based on the proposed approach according to Down syndrome classes
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technique eliminated dataset imbalance and increased the 
model’s accuracy.
Uzun and Kaya(28) developed an ML model, including Bayesian 
and naive Bayesian algorithms, using biochemical and 
biophysical FTS measurements to detect Trisomy 21. Since the 
dataset used in this study contained sample deficiencies and 
imbalances, the authors resorted to optimization techniques. 
This approach increased the model’s performance and provided 
accurate results.
Catic et al.(29) proposed a neural network-based model for 
detecting DS and other genetic disorders (Edwards, Turner, 
Klinefelter Syndrome, Patau) using maternal serum screening 
data in the first trimester. They used a dataset of 2500 samples in 
their study, and the experimental results showed that recurrent 
neural networks provide higher accuracy than other methods.
Wøjdemann et al.(30) used combined test data (NT and double 
test) and double test data (β-hCG, PAPP-A) to examine the 
detection of DS and other chromosomal abnormalities in a 
Danish population. The study aimed to enhance screening 
accuracy by evaluating the effectiveness of different test 
combinations. The findings highlight the significance of both 
dual and combined tests as essential tools for the early detection 
of chromosomal abnormalities.
These studies are important illustrations of the potential 
applications of technologies such as ML, AI, and DL in the 
healthcare industry, specifically in genetic disorder detection 
and prenatal screening. The high accuracy rates of the 
developed models can help reduce false positives and increase 
the dependability of screening results.
The study results show that machine learning-based models 
can be used effectively in prenatal screening processes and that 
higher accuracy rates can be achieved compared to traditional 
methods. Such AI-supported approaches can contribute to 
reducing unnecessary invasive tests and improving clinical 
decision-making processes by increasing early diagnosis 
accuracy. Future studies should aim to increase the 
generalization capacity of the model on larger data sets and to 
provide integration with different ML algorithms.

Study Limitations

This study has several limitations that should be acknowledged. 
First, although the dataset initially included 959 records, 106 
cases (approximately 11%) were excluded due to missing 
or duplicate data. Even though data cleaning was carefully 
performed, this reduction may have caused a minor loss in 
statistical power. Internal comparisons between complete-case 
models and those with imputed data showed a slight average 
difference of 1.3% in accuracy. This suggests that missing data 
might have had a modest impact on model performance.
Second, due to the earthquake on February 6, 2023, our hospital 
was temporarily evacuated, and routine data archiving was 
disrupted. While test results before this date were systematically 
recorded in the WePoint system along with ultrasound images, 
the records after the earthquake lacked these images. As a result, 

NT measurements in 318 cases could not be verified. Since NT 
is operator-dependent, this may have introduced measurement 
inconsistencies that could affect the model’s accuracy.
Third, although the sample size was relatively large (n=853), all 
data were collected from a single tertiary hospital in southeastern 
Türkiye. Therefore, the findings may not fully represent 
populations from different geographic or clinical settings. 
Model performance may vary elsewhere, and recalibration 
could be needed before applying it in other regions.
Fourth, the study did not include diagnostic confirmation 
through invasive tests such as amniocentesis, nor did it include 
non-invasive tests like NIPT. Therefore, sensitivity, specificity, 
positive predictive value, and negative predictive value could 
not be calculated. In addition, follow-up data on post-screening 
clinical decisions were not available, limiting our ability to 
evaluate the real-world impact of the model.
Finally, this model was developed using only first-trimester 
biochemical and biophysical markers. Other clinical factors 
such as maternal health conditions, lifestyle habits, or family 
history were not included. Future research should include a 
wider range of clinical data and involve prospective, multicenter 
studies to improve generalizability and clinical usefulness.

Conclusion

Experimental findings indicate that tree-based ML models 
demonstrated superior performance, particularly in the 
presence of class imbalance within the dataset. Among the 
evaluated models, CatBoost achieved the highest accuracy rate 
at 95.31 percent, followed closely by XGBoost at 95.19 percent 
and LightGBM at 94.84 percent. These models were especially 
effective in capturing complex relationships among variables 
and showed strong generalization capabilities. In contrast, more 
traditional classification algorithms yielded comparatively lower 
accuracy scores, suggesting their limited capacity to handle the 
non-linear patterns and imbalance inherent in the data.
Further class-based performance analyses revealed that 
the dataset exhibited a skewed distribution, with a 
disproportionately high number of samples in the low-risk 
category. As a result, the models tended to overpredict the 
low-risk class while underrepresenting medium- and high-risk 
groups. This observation highlights a potential bias introduced 
by the class imbalance, which may compromise the model’s 
sensitivity in detecting higher-risk cases.
To address this limitation, the integration of advanced data 
balancing techniques, such as oversampling, undersampling, 
or synthetic data generation, (e.g., SMOTE) is recommended 
for future research. Incorporating these methods may help 
enhance the model’s performance across all risk groups, 
thereby improving both the fairness and diagnostic value of AI-
supported prenatal risk assessments.

Ethics

Ethics Committee Approval: The study protocol and data 
collection process were reviewed and approved by the Çukurova 
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