

Correlation between the existence of serum autoantibodies and the risk of endometriosis: A systematic review and meta-analysis

Serum otoantikorlarının varlığı ile endometriozis riski arasındaki korelasyon: Sistematik bir derleme ve meta-analiz

Shiva Fekri¹, Reza Hassanzadeh Makoui², Regar Ansari³, Masoud Hassanzadeh Makoui⁴

¹Zanjan University Faculty of Medicine, Department of Obstetrics and Gynecology, Zanjan, Iran
 ²Zanjan University Faculty of Medicine, Department of Cardiology, Zanjan, Iran
 ³Zanjan University Faculty of Medicine, Department of Internal Medicine, Zanjan, Iran
 ⁴Zanjan University of Medical Sciences, Department of Immunology, Zanjan, Iran

Abstract

Endometriosis is a common condition among women and can cause complications such as abdominal pain, dysmenorrhea, and infertility. One of the potential causes of this disease is autoimmunity. However, evidence regarding the role of autoimmunity is conflicting and inconclusive. The aim of this study was to investigate whether autoantibodies, a sign of autoimmunity, are present in people suffering from endometriosis. Relevant studies up to April 14, 2023 were identified by systematically searching Scopus, PubMed, Web of Science, Embase, and Google Scholar. This meta-analysis includes all qualified case-control studies of human populations that analyzed the association between serum autoantibodies and endometriosis. The odd ratios and 95% confidence intervals were calculated. In addition, heterogeneity and publication bias were examined, and subgroup analyses were performed based on region and target antigens. Forty-one studies were included, comparing 2,825 endometriosis patients with 4,158 healthy controls. The meta-analysis findings indicated a significant association between the presence of autoantibodies in the serum and an increased susceptibility to endometriosis (odds ratio: 4.242, confidence interval 95%: 3.824-4.706, p<0.001). In addition, there was a significant correlation between the presence of endometriosis and serum levels of anti-nuclear antibodies, B2 glycoprotein 1, CA125, carbonic anhydrase 1, cardiolipin, endometrial, laminin-1, smooth muscle, and syntaxin autoantibodies. Upon further analysis, it was found that the serum levels of these autoantibodies were higher in patients with endometriosis from North America than in those from other regions (p=0.001). The study revealed a significant correlation between serum autoantibodies and susceptibility to endometriosis, highlighting autoimmunity as a potential cause.

Keywords: Autoantibody, endometriosis, meta-analysis, serum

Öz

Endometriozis kadınlarda sık görülen bir durumdur ve karın ağrısı, dismenore ve infertilite gibi komplikasyonlara neden olabilir. Bu hastalığın potansiyel nedenlerinden biri otoimmünitedir. Ancak otoimmünitenin rolüne ilişkin kanıtlar çelişkili ve belirsizdir. Bu çalışmanın amacı, endometriozis hastası kişilerde otoimmünite belirtisi olan otoantikorların mevcut olup olmadığını araştırmaktır. 14 Nisan 2023 tarihine kadar olan ilgili çalışmalar Scopus, PubMed, Web of Science, Embase ve Google Scholar'da sistematik olarak arama yapılarak belirlendi. Bu meta-analiz, serum otoantikorları ile endometriozis hastaları arasındaki ilişkiyi analiz eden insan popülasyonlarına ilişkin tüm nitelikli olgu-kontrol çalışmalarını içermektedir. Olasılık oranları ve %95 güven aralıkları hesaplanmıştır. Ayrıca heterojenlik ve yayın yanlılığı incelenmiş, bölge ve hedef antijenlere göre alt grup analizleri yapılmıştır. Bu yazıya 2.825 endometriozis hastasını 4.158 sağlıklı kontrolle karşılaştıran 41 çalışma dahil edilmiştir. Meta-analiz bulguları, serumda otoantikorların varlığı ile endometriozis karşı artan duyarlılık arasında anlamlı bir ilişki olduğunu göstermiştir (risk oranı: 4,242, güven aralığı %95: 3,824-4,706, p<0,001). Ayrıca endometriozis varlığı ile anti-nükleer antikorlar, B2 glikoprotein 1, CA125, karbonik anhidraz 1, kardiyolipin, endometrial, laminin-1, düz kas syntaxin antikorlarını serum seviyeleri arasında anlamlı bir korelasyon olduğu bulunmuştur. Daha ileri analizler sonucunda, Kuzey Amerika'daki endometriozisli hastalarda bu otoantikorların serum seviyelerinin diğer bölgelerdekilere göre daha yüksek olduğu bulunmuştur (p=0,001). Çalışma, serum otoantikorları ile endometriozise yatkınlık arasında anlamlı bir korelasyon olduğunu ortaya çıkarmış ve otoimmünitenin potansiyel bir neden olduğunu vurgulamıştır.

Anahtar Kelimeler: Otoantikor, endometriozis, meta-analiz, serum

Address for Correspondence/Yazışma Adresi: Prof. Masoud Hassanzadeh Makoui MD, Zanjan University of Medical Sciences, Department of Immunology, Zanjan, Iran Phone: +989122417196 E-mail: dr.m.makoui@zums.ac.ir ORCID ID: orcid.org/0000-0002-0821-4420 Received/Geliş Tarihi: 12.03.2024 Accepted/Kabul Tarihi: 18.03.2024

Copyright^o 2024 The Author. Published by Galenos Publishing House on behalf of Turkish Society of Obstetrics and Gynecology. This is an open access article under the Creative Commons AttributionNonCommercial 4.0 International (CC BY-NC 4.0) License.

Introduction

Endometriosis is a prevalent medical condition characterized by endometrial tissue in extrauterine locations⁽¹⁾. This misplaced tissue responds to hormones and can cause internal bleeding, inflammation, and fibrosis⁽²⁾. A definitive diagnosis of endometriosis is performed after biopsy by surgery; therefore, its exact prevalence is uncertain⁽³⁾. However, it is estimated to affect 10-15% of women of reproductive age⁽⁴⁾. People affected by this disease experience symptoms such as pelvic pain, dysmenorrhea, and infertility⁽⁵⁾.

The exact etiology of this endometriosis remains unknown. However, previous research has shown that both genetic and environmental factors contribute to its development. Epigenetic abnormalities, anomalous estrogen production, retrograde menstruation, autoimmune responses, and allergic reactions are potential etiological factors^(6,7).

Several studies have been conducted on the role of autoimmune responses as a potential etiological factor in endometriosis. They have demonstrated that endometriosis is correlated with persistent regional inflammation and autoantibodies. Their results showed that women with endometriosis display immune system abnormalities similar to those seen in autoimmune diseases^(8,9). This includes disrupted immune surveillance, abnormal T and B-cell functions, heightened humoral immune response with increased autoantibodies in the serum, and inflammatory tissue damage^(9,10).

Although several studies have explored the connection between the presence of autoantibodies in the serum and the likelihood of developing endometriosis, the results have been inconsistent. The aim of this study was to analyze all relevant research and perform a meta-analysis to investigate this association.

Materials and Methods

Eligibility Criteria, Information Sources, and Search Strategy

This meta-analysis followed the Preferred Reporting Items for Systematic Reviews and Meta-analysis guidelines⁽¹¹⁾. Various databases, including Scopus, PubMed, Web of Science, EMBASE, and 30 pages of Google Scholar, were searched to identify relevant studies. The search was not restricted by language and covered the period from April 2023. The references of the included studies were also hand-searched. The search strategies consisted of the terms "endometriosis", "autoantibodies", "serum" and their related synonyms.

Women diagnosed with endometriosis based on standard criteria confirmed by laparoscopic sampling and/or histological examination will participate in this review. This study will compare endometriosis patients with healthy women of the same age group.

Study Selection

This meta-analysis included all available case-control studies that met the following criteria: Analysis of the association between autoantibodies and endometriosis patients provides necessary information for a meta-analysis.

The exclusion criteria were as follows: Letters, editorials, abstracts, conference abstracts, or publications lacking adequate information; studies that used women with diseases other than endometriosis, particularly autoimmune diseases; and studies that explored the presence of autoantibodies in bodily fluids or tissues other than serum.

Data Extraction

Two reviewers independently extracted the pertinent data from the selected studies. If necessary, the investigators resolved the differences through discussion and consultation with a third-party. The information extracted was entered into an Excel form, including the last name of the first author, date and location of the study, number of participants in both the case and control groups, mean age of participants, method of diagnosing endometriosis, subclass of autoantibodies, sample type, method of evaluating autoantibodies, and the number or mean value and standard deviation of autoantibody-positive cases and controls.

Assessment of the Risk of Bias

The articles' quality was evaluated by two reviewers using the Newcastle-Ottawa Quality Assessment scale (NOS)⁽¹²⁾, and any discrepancies were resolved by a third reviewer. Articles that achieved a NOS score of 7 or above were classified as high quality, whereas those with scores between 5 and 7 were moderate quality.

Data Synthesis

All data were statistically analyzed using Comprehensive metaanalysis software version 3.0 (Biostat, USA). To determine the odds ratios (ORS) and their corresponding 95% confidence intervals (CIS), the statistical analysis used the groups' sample size, mean serum autoantibody level, and standard deviation for both patients diagnosed with endometriosis and the healthy control group. Some studies presented continuous variables as median and quartile, which were converted to mean and standard deviation using the formula in the Cochrane Handbook^(13,14). The heterogeneity of the studies was assessed using Cochrane Q and I² statistics. The random-effects model was used to estimate the outcome data in cases where the Cochrane Q p-value was less than 0.1 and the I² value exceeded 50%, indicating the presence of statistical heterogeneity. Conversely, a fixed-effects model was employed in other instances. Subgroup analysis was performed to evaluate the impact of confounding variables on the outcomes of the meta-analysis. A sensitivity analysis was also conducted, in which each study was systematically excluded to assess the stability of the obtained results.

Results

Study Selection

After conducting a comprehensive search of the available resources, 1,053 studies were obtained. We then removed any duplicate sources and examined the titles and abstracts of 663 studies. Of these, 71 studies were selected for full-text review. Finally, after applying the inclusion and exclusion criteria, 41 studies were included in our meta-analysis. The process of literature screening and its outcomes are presented in Figure 1. The studies included in the analysis were assigned ratings ranging from zero to nine based on the Ottawa-Newcastle scale for case-control studies. As shown in Table 1, thirty-three studies were assessed as being of high quality, whereas eight studies were evaluated as being of moderate quality.

Study Characteristics

In line with the research methodology, we included a total of forty-one eligible case-control studies to investigate the correlation between the presence of autoantibodies and the risk of endometriosis. Eighteen studies were conducted in Europe⁽¹⁵⁻³²⁾, eleven in Asia⁽³³⁻⁴³⁾, nine in North America^(29,44-51), and four in South America⁽⁵²⁻⁵⁵⁾. The basic characteristics of the included studies are listed in Table 1 and Table 2. Table 3 shows the number of studies investigating each autoantibody.

Risk of Bias of the Included Studies

Funnel plots, Begg's rank correlation, and Egger's regression tests were used to examine the existence of publication bias. Figure 2 and Table 3 present the outcomes of publication bias. Based on the results of statistical tests and asymmetry analysis of funnel plots, there is a possible publication bias in the studies that investigated pooled and anti-laminin-1 autoantibodies (as shown in Table 3). However, in other autoantibody studies, although a few exhibits slight visual asymmetry, statistical tests do not indicate any significant publication bias. The funnel plot diagrams, which show the likelihood of publication bias in studies on autoantibodies, were modified using the trim and fill test. The modifications did not result in any significant changes in studies that investigated the total and anti-laminin-1 autoantibodies (data not shown).

Synthesis of the Results

The findings of the meta-analysis indicate a substantial correlation between the existence of autoantibodies and susceptibility to endometriosis (OR: 4.242, CI 95%: 3.824-4.706, p<0.001) (Figure 3). Furthermore, individuals with endometriosis exhibited significantly higher levels of anti-nuclear antibodies (anti-ANA) (OR: 5.862, CI 95%: 3.454-9.950, p<0.001), B2 glycoprotein 1 (OR: 4.542, CI 95%: 1.360-15.175, p=0.014), CA125 (OR: 3.602, CI 95%: 1.485-8.733, p=0.005), carbonic anhydrase 1 (OR: 6.860, CI 95%: 3.043-15.468, p<0.001), cardiolipin (OR: 6.806, CI 95%: 3.369-13.749, p<0.001), endometrial (OR: 11.793, CI 95%: 2.382-58.383, p=0.002), laminin-1 (OR: 6.340, CI

95%: 3.151-12.757, p<0.001), smooth muscle (OR: 8.041, CI 95%: 4.442-14.557, p<0.001), and syntaxin (OR: 3.815, CI 95%: 1.249-11.649, p=0.019) autoantibodies than healthy controls. Statistical analysis found no significant relationship between autoantibodies against enolase (OR: 2.067, CI 95%: 0.739-5.782, p=0.167) and PDIK1L (PDLIM1 interacting kinase 1 like) (OR: 1.434, CI 95%: 0.241-8.528, p=0.692) and susceptibility to endometriosis.

The relevant forest plots are presented in Figure 4. It is worth mentioning that the conducted studies^(52,53,55) failed to detect anti-dsDNA autoantibodies in individuals suffering from endometriosis, indicating the absence of any correlation.

Heterogeneity Test and Subgroup Analysis

The I² test and Cochrane Q statistic showed heterogeneity among studies analyzing total, anti-CA125, anti-endometrial, anti-enolase, anti-PDIK1L, and anti-syntaxin autoantibodies. However, studies related to other autoantibodies showed no significant between-study heterogeneity, as shown in Table 3. To investigate the cause of heterogeneity, subgroup analysis was conducted based on the region. The findings revealed that patients with endometriosis from North America had notably higher levels of autoantibody titers than patients from other regions (p=0.001), and the region of living was identified as one of the sources of heterogeneity. In addition, subgroup analysis based on differences in target antigens of autoantibodies demonstrated this factor as a cause of heterogeneity in the study of pooled autoantibodies (p<0.001).

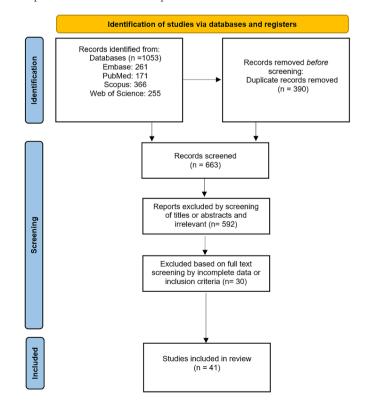


Figure 1. The flow chart of literature search and study selection

Table 1. Basic characteristics of the included studies											
First author	Year	Country	Ethnicity	Endometriosis diagnosis protocol	Mean age or age range case	Mean age or age range control	NOS score				
Mathur et al. ⁽⁴⁴⁾	1982	USA	North American	Laparoscoy and biopsy or laparotomy	26-37	26-37	6				
Taylor et al. ⁽¹⁵⁾	1991	UK	European	Laparoscoy and biopsy or laparotomy	33.5	31.6	6				
Gorai et al. ⁽³³⁾	1993	Japan	Asian	Laparoscopy or laparotomy	21-46	20-46	7				
Fernández-Shaw et al. ⁽¹⁶⁾	1993	UK	European	Laparoscopy	-	-	7				
Kiechle et al. ⁽⁴⁵⁾	1994	USA	North American	Laparoscoy	34.8	32.6	7				
Kim et al. ⁽³⁴⁾	1995	Korea	Asian	Laparoscopy or laparotomy	30-40	-	6				
Aoki et al. ⁽⁴⁶⁾	1995	USA	North American	Laparoscopy	33	33	7				
Nip et al. ⁽¹⁷⁾	1995	UK	European	Laparoscopy	34	34	8				
Odukoya et al. ⁽¹⁸⁾	1995	UK	European	Laparoscopy and histology	33	33	7				
Pillai et al. ⁽⁵⁰⁾	1996	USA	North American	Laparoscopy	-	25-35	6				
Hatayama et al. ⁽³⁵⁾	1996	Japan	Asian	Laparoscopy or laparotomy	35.3	35.3	6				
D'Cruz et al. ⁽⁴⁷⁾	1996	USA	North American	Laparoscopy	<45	<45	7				
Fernández-Shaw et al. ⁽¹⁹⁾	1996	UK	European	Laparoscopy	-	-	7				
Kim et al. ⁽³⁶⁾	1997	Korea	Asian	Laparoscopy	32	32	7				
Kaider et al. ⁽⁴⁸⁾	1999	USA	North American	Laparoscopy	-	-	8				
Shanti et al. ⁽⁵¹⁾	1999	USA	North American	Histologically	18-45	-	7				
Szczepañska et al. ⁽²⁵⁾	2001	Poland	European	Laparoscopy	29.0	-	7				
Reimand et al. ⁽²⁶⁾	2001	Estonia	European	Laparoscopy and histology	27.5	31.0	8				
Ulcová-Gallová et al. ⁽³²⁾	2002	Czech Republic	European	Laparoscopy	35.6	35.6	6				
Pasoto et al. ⁽⁵²⁾	2002	Brazil	South American	Laparoscopy	18-40	18-40	7				
Inagaki et al. ⁽⁴³⁾	2003	Israel	Asian	Laparoscopy and laparotomy	33.7	29.6	7				

Table 1. continued											
First author	Year	Country	Ethnicity	Endometriosis diagnosis protocol	Mean age or age range case	Mean age or age range control	NOS score				
Pasoto et al. ⁽⁵³⁾	2005	Brazil	South American	Laparoscopy or laparotomy and histological	18-40	18-40	7				
Haller et al. ⁽²⁷⁾	2006	Estonia	European	Laparoscopy	33.0±5.5	-	7				
Randall et al. ⁽⁴⁹⁾	2007	USA	North American	Laparoscopy	31.8±6.5	31.8±6.5	7				
Haller et al. ⁽²⁸⁾	2007	Estonia	European	Laparoscopy	34.0±4.8	44.9±10.7	8				
Caccavo et al. ⁽²⁰⁾	2007	Italy	European	Laparoscopy	34.4±4.2	33.3±3.1	7				
Aguiar et al. ⁽⁵⁴⁾	2009	Brazil	South American	laparoscopy and histology	29.2±5.6	27.9±4.5	8				
Nabeta et al. ⁽³⁷⁾	2009	Japan	Asian	Laparoscopy	34.7±7.6	35.0±3.7	6				
Nabeta et al. ⁽³⁸⁾	2010	Japan	Asian	laparosccopy or laparotomy	35.2±8.0	34.2±9.3	7				
Inagaki et al. ⁽⁴¹⁾	2011	Japan	Asian	Laparoscopy or laparotomy and histology	31.9	29.6	9				
Caccavo et al. ⁽²¹⁾	2011	Italy	European	laparoscopy and histology	34.8±3.7	-	7				
Nabeta et al. ⁽³⁹⁾	2011	Japan	Asian	Laparoscopy or laparotomy	35.2±8.0	34.2±9.3	7				
Gajbhiye et al. ⁽⁴²⁾	2012	India	Asian	Laparoscopy and histology	31.2±4.9	28.9±5.3	8				
Ozhan et al. ⁽²²⁾	2014	Turkey	European	Laparoscopy or laparotomy	32.33±7.01	34.20±6.88	7				
Gajbhiye et al. ⁽⁴⁰⁾	2017	India	Asian	Laparoscopy and histology	32.6±6.3	32.13±6.03	8				
Yu-Rice et al. ⁽²⁹⁾	2017	USA & Germany	North American and European	-	28-70	18-65	7				
Ek et al. ⁽²³⁾	2019	Sweden	European	Laparoscopy	38.0	42.5	7				
Toullec et al. ⁽³⁰⁾	2020	French	European	Histologically	33.00±5.365	-	7				
Artymuk et al. ⁽³¹⁾	2021	Russia	European	Laparoscopy and histology	31.6±4.8	31.8±6.5	6				
Svensson et al. ⁽²⁴⁾	2022	Sweden	European	Laparoscopy	32.0-43.0	33-53	7				
Vilas Boas et al. ⁽⁵⁵⁾	2022	Brazil	South American	Laparoscopy and histology	37.2±7.1	37.8±5.6	8				

NOS: Newcastle-Ottawa Quality Assessment scale

First author	Year	Case number	Control number	Ig type	Sample type	Method	The investigated autoantibody	
Mathur et al. ⁽⁴⁴⁾	1982	13	15	IgG	Serum	Passive haemagglutination	Endometrial Ovary Granulosa Theca	
Taylor et al. ⁽¹⁵⁾	1991	71	109	IgG, IgM and IgA	Serum	IF, WB, Counterimmunoelectrophoresis and Double immunodiffusion	Cardiolipin ANA Lupus anti-coagulant Smooth muscle RO (SS-A) La (SS-B)	
Gorai et al. ⁽³³⁾	1993	18	27	-	Serum	WB	Endometrial	
Fernández-Shaw et al. ⁽¹⁶⁾	1993	13	7	IgG	Serum	IHC	Endometrial Endothelial	
Kiechle et al. ⁽⁴⁵⁾	1994	23	17	IgG	Serum	WB	Carbonic anhydrase I	
Kim et al. ⁽³⁴⁾	1995	33	20	IgG	Serum	IHC and WB	Endometrial	
Aoki et al. ⁽⁴⁶⁾	1995	64	97	IgG	Serum	ELISA	Cardiolipin B2 Glycoprotein 1 Antiphospholipid antigens (PA, PG, PE, PI, PS)	
Nip et al. ⁽¹⁷⁾	1995	20	20	IgG and IgM	Serum	ELISA and IF	Cardiolipin ANA Smooth muscle	
Odukoya et al. ⁽¹⁸⁾	1995	55	43	IgG	Serum	ELISA	Endometrial Ovary Thyroid Skeletal muscle	
Pillai et al. ⁽⁵⁰⁾	1996	46	18	IgG	Serum	Passive hemagglutination	Endometrial Transferrin Alpha 2-Heremans Schmidt (HS) Glycoprotein	
Hatayama et al. ⁽³⁵⁾	1996	20	20	IgG	Serum	ELISA	Endometrial	
D'Cruz et al.(47)	1996	319	100	IgG	Serum	ELISA	Carbonic anhydrase I and II	
Fernandéz-Shaw et al. ⁽¹⁹⁾	1996	51	23	IgG	Serum	ELISA	Endometrial	
Kim et al. ⁽³⁶⁾	1997	42	87	IgG	Serum	ELISA	Cardiolipin ANA Lupus anti-coagulant	
Kaider et al. ⁽⁴⁸⁾	1999	23	105	IgG, IgM and IgA	Serum	ELISA	Antiphospholipid antigens (PL) ANA Thyroid	
Shanti et al. ⁽⁵¹⁾	1999	40	16	IgG	Serum	ELISA	Malondialdehyde-modified Oxidized low-density lipoprotein Lipid peroxide-modified	
Szczepañska et al. ⁽²⁵⁾	2001	50	20	IgG	Serum	ELISA	Zona pellucida	

Table 2. The fundamental details of the selected studies about the evaluation of autoantibodies

Table 2. continued

First author	Year	Case number	Control number	Ig type	Sample type	Method	The investigated autoantibody
Reimand et al. ⁽²⁶⁾	2001	38	392	IgG	Serum	IF and ELISA	B2 Glycoprotein 1 Carbonic anhydrase I ANA Smooth muscle Parietal cell Thyroid microsomal Mitochondrial
Ulcová-Gallová et al. ⁽³²⁾	2002	323	101	IgG	Serum	ELISA	Cardiolipin B2 Glycoprotein 1 Antiphospholipid antigens (PA, PG, PE, PI, PS) Zona pellucida
Pasoto et al. ⁽⁵²⁾	2002	39	18	-	Serum	IF	ANA RO/LA RNP/Sm dsNDA
Inagaki et al. ⁽⁴³⁾	2003	42	39	IgG	Serum	ELISA	Laminin-1
Pasoto et al. ⁽⁵³⁾	2005	45	21	IgG and IgM	Serum	IF and ELISA	Cardiolipin Carbonic anhydrase I ANA RO (SS-A) dsDNA Histon Smooth muscle U1RNP
Haller et al. ⁽²⁷⁾	2006	12	56	IgG	Serum	IF and ELISA	ANA Ovary Smooth muscle Parietal cell Thyroid microsomal Mitochondrial B2 Glycoprotein I Cardiolipin
Randall et al.(49)	2007	278	249	IgG	Serum	IF	Endometrial
Haller et al. ⁽²⁸⁾	2007	12	85	IgG, IgA and IgM	Serum	ELISA and IF and ImmunoCAP technology	FSH ANA Ovary Smooth muscle Parietal cell Thyroid microsomal Mitochondrial B2 Glycoprotein I Cardiolipin
Caccavo et al. ⁽²⁰⁾	2007	18	16	IgG and IgM	Serum	ELISA	Cardiolipin
Aguiar et al. ⁽⁵⁴⁾	2009	120	1500	IgA	Serum	ELISA and IF	Human tissue transglutaminase Endomysium
Nabeta et al. ⁽³⁷⁾	2009	65	70	IgG	Serum	ELISA	CA125 Enolase
Nabeta et al. ⁽³⁸⁾	2010	69	82	IgG	Serum	ELISA	CA125 PDIK1L

Table 2. continued

First author	Year	Case number	Control number	Ig type	Sample type	Method	The investigated autoantibody
Inagaki et al. ⁽⁴¹⁾	2011	45	39	IgG	Serum	ELISA	Laminin-1
Caccavo et al. ⁽²¹⁾	2011	35	50	IgG	Serum	ELISA	Laminin-1
Nabeta et al. ⁽³⁹⁾	2011	69	82	IgG	Serum	ELISA	Syntaxin
Gajbhiye et al. ⁽⁴²⁾	2012	50	27	IgG	Serum	WB and ELISA	Tropomyosin 3 Stomatin-like protein 2 Tropomodulin 3
Ozhan et al. ⁽²²⁾	2014	60	20	-	Serum	ELISA	Laminin-1 Endometrial CA125 Syntaxin PDIK1L Enolase
Gajbhiye et al. ⁽⁴⁰⁾	2017	133	104	-	Serum	ELISA	CA125 CA19-9 Syntaxin PDIK1L Enolase Tropomyosin 3a Tropomyosin 3b Tropomyosin 3c Tropomyosin 3d Stomatin-like protein 2a Stomatin-like protein 2a Stomatin-like protein 2b Stomatin-like protein 2c Tropomodulin 3a Tropomodulin 3b Tropomodulin 3c Tropomodulin 3d
Yu-Rice et al. ⁽²⁹⁾	2017	18	30	IgG	Serum	ELISA	Selenium binding protein 1
Ek et al. ⁽²³⁾	2019	100	100	IgG	Serum	ELISA	LH LH receptor GnRH1 GnRH1 receptor Matrix metalloproteinase-9 Tenascin-C
Toullec et al. ⁽³⁰⁾	2020	106	92	IgG	Serum	ELISA	Granulocyte-macrophage colony stimulating factor
Artymuk et al. ⁽³¹⁾	2021	100	100	IgG	Serum	ELISA	Estrogen Progesterone
Svensson et al. ⁽²⁴⁾	2022	53	50	IgG	Serum	ELISA	LH LH receptor FSH FSH receptor TSH TSH receptor HCG
Vilas Boas et al. ⁽⁵⁵⁾	2022	94	91	IgG	Serum	IF and ELISA	ANA ENA dsDNA
		-					

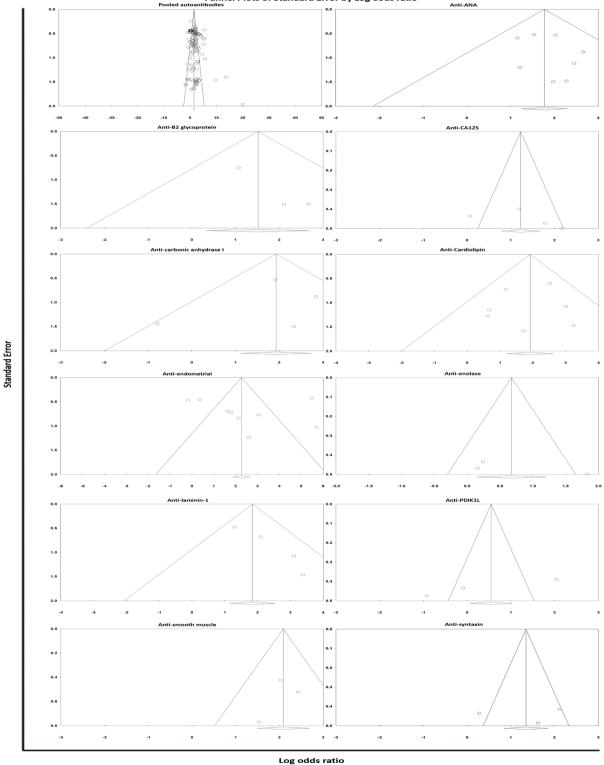
Ig: Immunoglobulin, IF: Immunofluorescence, WB: Western-Blot, ELISA: Enzyme-Linked Immunosorbent Assay, IHC: Immunohistochemistry, FSH: Follicle-stimulating hormone, LH: Luteinizing hormone, PDIK1L: PDLIM1 interacting kinase 1 like, ANA: Anti-nuclear antibodies, TSH: Thyroid-stimulating hormone, HCG: Human chorionic gonadotropin, CA125: Carcinoembryonic antigen 125, CA19-9: Carcinoembryonic antigen 19-9, PA: Antiphospholipid antigen PA, PE: Antiphospholipid antigen PE, PG: Antiphospholipid antigen PG, PI: Antiphospholipid antigen PI, PL: Antiphospholipid antigen PL, PS: Antiphospholipid antigen PS, RO: A kind of extractable nuclear antigens (RO/SSA)

Variables (autoantibodies)	Number of included studies	l ² (%)	Q-test's p-value	P-value of Begg's test	P-value of Egger's test
All of the autoantibodies	41	84.47	<0.001	0.130	0.05
Anti-ANA	8	0.00	0.859	0.804	0.406
Anti-B2 glycoprotein 1	3	0.00	0.578	0.601	0.169
Anti-CA125	4	75.25	0.007	0.174	0.415
Anti-carbonic anhydrase I	4	36.39	0.194	1.000	0.663
Anti-cardiolipin	7	1.51	0.413	0.880	0.746
Anti-endometrial	9	93.07	<0.001	0.251	0.788
Anti-enolase	3	73.63	0.023	0.601	0.394
Anti-laminin-1	4	23.43	0.270	0.308	0.036
Anti-PDIK1L	3	92.49	<0.001	0.296	0.125
Anti-smooth muscle	3	0.00	0.620	0.601	0.652
Anti-syntaxin	3	79.70	0.007	0.601	0.940
ANA: Anti-nuclear antibodies, CA125: Car	cinoembryonic antigen 125. PDIk	X1L: PDLIM1 interacti	ng kinase 1 like		

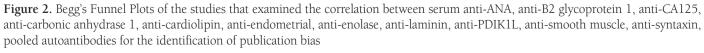
Table 3. The findings related to the analysis of heterogeneity and publication bias of the conducted studies

Sensitivity Analysis

Sensitivity analyses were conducted to evaluate the potential impact of a single study on the overall effect of autoantibodies in endometriosis. The sensitivity analyses indicated that upon exclusion of each study, the general conclusions remained substantially unchanged. These analyses consistently exhibited the robustness of the meta-analysis outcomes.


Discussion

Endometriosis is a significant health issue that affects women, but its exact cause remains unknown⁽⁵⁶⁾. Several theories have been proposed to explain its origin, including autoimmunity⁽⁵⁷⁾. However, studies investigating the development of autoantibodies in patients with autoimmune conditions have produced conflicting results. Therefore, the research collected and analyze the current body of information on this topic. The findings of our study indicate that the serum of individuals diagnosed with endometriosis has significantly higher levels of autoantibodies than that of healthy controls.


Studies have shown an increase in both the activity and quantity of B-cells in the serum of individuals with endometriosis^(58,59). The increase in B-cell activity leads to an elevated production of antibodies, which is consistent with the findings of the current study. Research has shown that immune cells, particularly B-cells, demonstrate an increase within lesions associated with endometriosis⁽⁶⁰⁾. In addition, the secretion of cytokines responsible for activating B-cells, such as B lymphocytestimulators, also experiences an elevation within these specific regions⁽⁵⁹⁾. These findings validate the results of our study.

Endometriosis relies on estrogen for its development⁽⁶¹⁾ and estrogen has been identified as one of the potential mechanisms that increase the quantity and functionality of B-cells in individuals with endometriosis(62). Research suggests that estrogen initiates a genetic program that alters the survival and activation of B-cells, leading to a shift in the naive immune system toward autoreactivity⁽⁶²⁾. The exact cause of autoantibody formation in endometriosis is not well understood, but it is thought to be related to cellular damage and inflammation that occur in endometriosis-associated lesions. Abnormal exposure of self-antigens from damaged cells to the immune system triggers an autoimmune response, leading to the formation of autoantibodies that target cell-derived antigens⁽⁶³⁾.

This study suggests that differences in the target antigens of autoantibodies and continent of residence may contribute to the observed heterogeneity. The results of the subgroup analysis show that North American patients with endometriosis have higher levels of autoantibodies. Differences in genetic or environmental factors may explain this disparity. Additionally, according to the literature, autoimmune antibody manifestation varies among North American ethnic groups. Bruner et al.⁽⁶⁴⁾ discovered that African Americans with systemic lupus erythematosus exhibit significantly higher levels of anti-ANA autoantibody expression than other North American races. It is important to consider factors beyond ethnicity that can contribute to heterogeneity, such as sampling error, use of varied laboratory tests, body mass index, and age. It is crucial to study these factors in depth in future research efforts.

Funnel Plots of Standard Error by Log oods ratio

ANA: Anti-nuclear antibodies, CA125: Carcinoembryonic antigen 125, PDIK1L: PDLIM1 interacting kinase 1 like

Study name	Target antigen			for each study			Odds ratio and 95% CI
		Odds ratio	Lower	Upper limit	Z-Value	p-Value	Relativ weigt
Pillai 1995 Kaider 1999	2-HSG ANA	6.000 14.306	1.219	29.529 79.457	2.204	0.028	
Kim 1997	ANA	11.622	1.312	102.946	2.204	0.028	
Nip 1995 Pasoto 2002	ANA ANA	3.353 7.179	0.318	35.364 134.708	1.007 1.318	0.314 0.188	
Pasoto 2005 Reimand 2001	ANA ANA	9.747 3.176	0.536	177.320 10.186	1.538 1.944	0.124 0.052	
Taylor 1991	ANA	7.600	2.687	21,499	3.823	0.000	
Vilas Boas 2022 Reimand 2001	ANA B2GP1D	4.649 8.217	1.663 0.425	12.996 158.801	2.929	0.003	
Aoki 1995 Ulcova-Gallova 2002	82GP1D 82GP1D	14.504 2.921	0.767	274.165 12.812	1.783 1.421	0.075	
Aoki 1995	B2GP1I CA125	0.369	0.040	3.379	-0.882	0.378	
Gajbhiye 2017 Nabeta 2009 Nabeta 2010	CA125 CA125 CA125	1.062 6.000 3.314	0.453 2.379 1.512	2.492 15.134 7.265	0.139 3.796 2.992	0.890	
Nabeta 2010 Ozhan 2014	CA125 CA125	3.314 8.664	1.512 3.261	7.265 23.014	2.992	0.003	
Sajbhiye 2017	CA19-9	0.984	0.419	2.307	-0.038	0.970	
Pasoto 2005 Reimand 2001	CAI CAI CAI	0.455 10.343	0.027	7.639 194.801	-0.548 1.560	0.584 0.119	
Cruz 1996 Gechle 1994	CAL	6.747 17.143	2.397 3.063	18.989 95.938	3.616 3.234	0.000	
Cruz 1996	CAI	3.365	1.301	8 70.4	2.503	0.012	
lim 1997 lip 1995	Cardiolipin Cardiolipin	20.235 5.541	2.438 0.249	167.983 123.079	2.785 1.082	0.005	
asoto 2005 aylor 1991	Cardiolipin Cardiolipin	1.951 25.465	0.205	18.616 453.277	0.581 2.204	0.551 0.028	
oki 1995 Ilcova-Gallova 2002	Cardiolipin Cardiolipin	3.241 12.425	0.780 3.839	13.464 40.209	1.619 4.205	0.106	
accave 2007	Cardiolipin	1.875	0.154	22,880	0.492	0.622	
zhan 2014 ernandez-Shaw 1993	Endometrial	0.848 13.500	0.339	2.125 152.211	-0.351 2.106	0.725	
ernandez-Shaw 1996 Iorai 1993	Endometrial Endometrial	1.426 5.091	0.583	3.489 19.649	0.777	0.437	
latayama 1996 Jim 1995	Endometrial	6.000	1.458	24,586	2.483	0.013	
0m 1995 Aathur 1982	Endometrial Endometrial	8.357 298.312 21.259	1.614 39.952	43.272 2227.421 96.675	2.531 5.555	0.011	
dukoya 1995 tandali 2007	Endometrial Endometrial	21.259 240.024	4.675 104.579	96.675 550.890	3.958 12.930	0.000	
Wai 1996	Endometrial Transferrin alpha	9.360	2.690	32,567	3,516	0.000	
guiar 2009 ernandez-Shaw 1993	Endomysium Endothelia	5.391 13.000	1.867 0.616	15.567 274.311	3.114 1.649	0.002	
ajbhiye 2017 labeta 2009	Enolase Enolase	1.273 6.244	0.543 2.351	2.988 16.582	0.555 3.675	0.579	
ozhan 2014	Enolase	6.244 1.174 4.511	0.469	2,940	0.342	0.732	
rtymuk 2021 faller 2007	Estrogen FSH	5.587	2.407 1.427	8.452 21.874	4.702 2.471	0.000	
Wensson Wensson 2022	FSH FSHR	0.181	0.008	3.871 8.999	-1.093 0.390	0.274 0.697	
oullec 2020	GM-CSF	3.144	1.306	7.565	2.556	0.011	
Aalin 2019 Aalin 2019	GnRH1 GnRH1R	0.495 2.042	0.044 0.365	5.548 11.408	-0.570 0.813	0.568 0.416	
lathur 1982 Ivensson 2022	Granulosa cells HCG	15524.507	885.462 0.008	272185.975 3.871	6.604 -1.093	0.000	
Pasoto 2005	Histon	0.919	0.243	3.476	-0.125	0.901	
laylor 1991 Gim 1997	LA LAC	3.130 15.506	0.279	35.183 307.403	0.924	0.355	
Faylor 1991 Ozhan 2014	LAC Laminin-1	7.878 3.681	0.373 1.438	166.541 9.421	1.326 2.717	0.185	
accave 2011	Laminin-1		2.738	184.235	2,898	0.004	
nagaki 2003 nagaki 2010	Laminin-1 Laminin-1	8.160 29.478	2.160 1.682	30.829 516.757	3.095 2.316	0.002	
Svensson 2022 Malin 2019	LH	0.181	0.008	3.871 7.242	-1.093 0.000	0.274	
vensson 2022	LHR	0.181	0.008	3.871	-1.093	0.274	
Malin 2019 Shanti 1999	LHR LPM-LDL	0.196 486611787.360	0.009 10345701.644	4.135 22887865874.409	-1.047 10.181	0.295	
Shanti 1999 Reimand 2001	MDA-LDL Mitochodrial	169.108 3.390	40.988 0.136	697.710 84.639	7.095	0.000	
faller 2007	Mixed antigens	2.520	0.707	8.98.4	1.425	0.154	o
taller 2006 Talin 2019	Mixed antigens MMP-9	3.212 5.765	0.892	11.566 27.044	1.785 2.221	0.074 0.026	
ilathur 1982 Ddukoya 1995	Ovary Ovary	25.170 1.194	5.132 0.315	123.442 4.529	3.976 0.261	0.000 0.794	
Shanti 1999	OX-LDL	888644 377		13846344.345		0.000	
loki 1995 Jicova-Gallova 2002	PA PA	4.606 3.505	0.185 0.192	114.847 63.943	0.931 0.847	0.352 0.397	
Reimand 2001 Jajbhiye 2017	Parietal cell PDIK1L	0.587	0.033 0.388	10.375 2.133	-0.363 -0.219	0.717	
Nabela 2010 Ozhan 2014	PDIK1L PDIK1L	7.772	3.624 0.158	16.667 1.010	5.268 -1.938	0.000	
koki 1995	PE	0.652	0.192	2.214	-0.686	0.493	
Jicova-Gallova 2002 Aoki 1995	PE PG PG	20.334 7.800	1.231 0.368	335.830 165.182	2.105 1.319	0.035 0.187	
Jicova-Gallova 2002 Joki 1995	PG PI	9.511 3.167	0.562 0.563	160.853 17.824	1.561 1.308	0.119	
Jicova-Gallova 2002	PI	7.602	1.808	31,962	2.768	0.006	o
(aider 1999 Irtymuk 2021	PL Progestrone	3.889 7.856	1,111 3.889	13.613 15.869	2.125 5.746 1.625	0.034	
oki 1995 Ilcova-Gallova 2002	PS PS	2.629 4.698	0.819	8 433	1.625	0.104 0.037	
asoto 2005	RO	1.449	0.057	20.079 37.074	0.224	0.822	
aylor 1991 u-Rice 2017	RO SBP1	3.130 1.706	0.279 0.100	35.183 29.073	0.924 0.369	0.355 0.712	
idukoya 1995 ajbhiye 2017	Skeletal muscle SLP2a	2.270 1.726	0.564 0.734	9.132 4.057	1.154 1.251	0.249 0.211	
albhiye 2012	SLP2a	11.723	4,608		5,167	0.000	
ajbhiye 2017 ajbhiye 2012	SLP2b SLP2b	1.603 18.240	0.682 6.950	3.767 47.875	1.083 5.898	0.279	
ajbhiye 2017 ajbhiye 2012	SLP2c SLP2c	1.572 28.913	0.669	3.693	1.038 6.583	0.299	
p 1995	Sm	4.636 7.578	1.023	21.004 17.431	1.990 4.765	0.047	
eimand 2001 aylor 1991	Sm Sm	11.304	3.294 4.072	17.431 31.380	4.656	0.000	
ajbhiye 2017 zhan 2014	Syntaxin Syntaxin	1.316 5.061	0.561	3.089 13.108	0.631 3.340	0.528	
abeta 2011 alin 2019	Syntaxin Tenascin-C	8.325	3.691	18.775	5.108	0.000	
athur 1982	Theca cells	107.179	17.360	661.708	5.033	0.000	
alder 1999 Idukoya 1995	Thyroid Thyroid	0.530 1.333	0.113 0.300	2.483 5.919	-0.806 0.378	0.420 0.705	
eimand 2001 ajbhiye 2017	TMA TMOD3a	0.316	0.019	5.390 3.221	-0.796	0.426	
aibhire 2012	TMOD3a	1.372 4.716	1.949	11412	0.727 3.440	0.001	│ │ [─] │ ─ _─ ──┤ │ ः
ajbhiye 2017 ajbhiye 2012	TMOD3b TMOD3b	1.849 68.868	0.786 23.374	4.350 202.910	1.409	0.159	
ajbhiye 2017 ajbhiye 2012	TMOD3e TMOD3e	1.662 61.091	0.707 20.977	3.907 177.920	1.166	0.244	
ajbhiye 2017	TMOD3d	1.541	0.656	3.620	7.540	0.321	
ajbhiye 2012 aibhiye 2017	TMOD3d TPM3a	230.765 1.691	68.947 0.719	772.365	8.828	0.000	
ajbhiye 2012	TPM3a	26.176	9.694	70.581	6.442	0.000	
ajbhiye 2017 ajbhiye 2012	ТРМЗБ ТРМЗБ	1.783 37.622	0.758 13.509	4.193 104.778	1.326 6.942	0.185	
ajbhiye 2017 ajbhiye 2012	TPM3c TPM3c	1.637 9.374	0.697 3.737	3.846 23.514	1.130 4.770	0.258	
ajbhiye 2017	TPM3d TPM3d	1.580	0.673 49.976	3.713	1.050	0.294	
ajbhiye 2012 Wensson 2022	TSH	0.181	0.008	3.871	-1.093	0.274	
	TSHR	7.194	2.132 2.669	24275 13,487	3.180 4.336	0.001	
Wensson 2022 Iguiar 2009	t-TGA						
vensson 2022 guiar 2009 Ilcova-Gallova 2002 Izczepanska 2001	t-TGA Zona Zona	6.000 1.354 1.027	0.832	2.206 2.631	1.219 0.056	0.223	

The correlation between existence of serum autoantibodies and susceptibility to endometriosis

Figure 3. Forest plot investigating the link between serum autoantibodies and endometriosis risk

2-HSG: 2-Heremans Schmidt Glycoprotein, ANA: Anti-nuclear antibodies, B2GP1D: B2 glycoprotein 1 dependent, B2GP1I: B2 glycoprotein 1 independent, CA125: Carcinoembryonic antigen 125, CA19-9: Carcinoembryonic antigen 19-9, CAI, Carbonic anhydrase 1, CAII: Carbonic anhydrase II, FSH: Follicle-stimulating hormone, GM-CSF: Granulocyte-macrophage colony-stimulating factor, GnRH1: Gonadotropin releasing hormone 1, GnRH1R: Gonadotropin releasing hormone 1 receptor, HCG: Human chorionic gonadotropin, LA: One kind of neutrophile antigens (LA/SSB), LAC: Lupus anti-coagulant, LH: Luteinizing hormone, LHR: Luteinizing hormone receptor, LPM-LDL: Lipid peroxide-modified LDL, DMA-LDL: Malondialdehyde-modified LDL, MMP-9: Matrix metallopeptidase-9, OX-LDL: Oxidized low-density lipoprotein, PA: Antiphospholipid antigen PA, PDIK1L: PDLIM1 interacting kinase 1 like, PE: Antiphospholipid antigen PE, PG: Antiphospholipid antigen PG, PI: Antiphospholipid antigen PI, PL: Antiphospholipid antigen PL, PS: Antiphospholipid antigen PS, RO: A kind of extractable nuclear antigens (RO/SSA), SBP1: Selenium binding protein 1, SLP2a,b,c: Stomatin-like protein 2a,b,c, 5m: Smooth muscle, TMA:, TMOD3a,b,c,d: Tropomodulin 3a,b,c,d, TPM3a,b,c,d: Tropomyosin 3a,b,c,d, TSH: Thyroid-stimulating hormone, TSHR: Thyroid-stimulating hormone receptor, t-TGA: Thyroglobulin The

ie co	rrelation betwe	een exis	stence	of differ	ent subg	roups of	serum ai	utoantibo	odies and	susceptit	oility to endometrio
		Odds	Lower	Upper							Relative
		ratio	limit			p-Value					weight
Anti-ANA	Kaider 1999	14.306	2.576	79.457	3.041	0.002					9.52
	Kim 1997	11.622	1.312	102.946	2.204	0.028				-	5.88
	Nip 1995 Pasoto 2002	3.353 7.179	0.318	35.364 134.708	1.007 1.318	0.314 0.188			-		5.04
	Pasoto 2005	9,747	0.536	177,320	1,538	0.124					3.33
	Reimand 2001	3.176	0.991	10.186	1.944	0.052				_	20.61
	Taylor 1991	7.600	2.687	21.499	3.823	0.000			-	-	25.88
	Vilas Boas 2022	4.649	1.663	12.996	2.929	0.003				⊢	26.48
		5.862	3.454	9.950	6.552	0.000					
Anti-B2 glycoprotein	Aoki 1995	14.504	0.767	274.165	1.783	0.075	1	1	+		16.84
	Gallova 2002	2.921	0.666	12.812	1.421	0.155				4	66.57
	Reimand 2001	8.217	0.425	158.801	1.394	0.163			_	_	16.59
	1	4.542	1.360	15.175	2 459	0.014					
		4.542	1.500	13.175	2.400	0.014	I	I		Т	I
	Gajbhiye 2017	1.062	0.453	2.492	0.139	0.890		1 .		1	25.46
1125	Nabeta 2009	6.000	2.379	15.134	3.796	0.000			-	∎∔	24.43
Anti-CA125	Nabeta 2010	3.314	1.512	7.265	2.992	0.003				-	26.41
۹	Ozhan 2014	8.664	3.261	23.014	4.332	0.000			-	-	23.71
		3.602	1.485	8.733	2.835	0.005			-	-	
ase											
hydr	Cruz 1996	6.747	2.397	18.989	3.616	0.000					61.74
Anti-carbonic anhydrase	Kiechle 1994	17.143	3.063	95.938	3.234	0.001				1=	22.29
carbo	Pasoto 2005	0.455	0.027	7.639	-0.548	0.584	-	-		-1	8.30
Anti-	Reimand 2001			194.801	1.560	0.119			1	+	7.67
		6.860	3.043	15.468	4.642	0.000		1		+	I
	Aoki 1995	3.241	0.780	13.464	1.619	0.106	1	1	+	+	24.38
	Caccavo 2007	1.875	0.154	22.880	0.492	0.622		I —		-	7.90
lipin	Gallova 2002	12.425	3.839	40.209	4.205	0.000				-	35.85
ardio	Kim 1997	20.235		167.983	2.785	0.005			-	+	11.04
Anti-Cardiolipin	Nip 1995	5.541		123.079	1.082	0.279		-	-	•	5.14
	Pasoto 2005	1.951 25.465	0.205	18.616 453.277	0.581 2.204	0.561		-		Τ.	9.72
	Taylor 1991	25.465 6.806	3.369	453.277	2.204 5.346	0.028					5.90
		0.000	0.000	10.740	0.040	0.000	1	I		1	1
	Shaw 1993	13.500							I—	- =	⇒ 9.60
	Shaw 1996 Gorai 1993	1.426 5.091	0.583			0.437			- †		11.85 11.31
trial	Hatayama 1996										11.23
Anti-endometrial	Kim 1995	8.357	1.614						<u> </u>	-	10.89
nti-en	Mathur 1982	298.312		2227.421						-	→ 10.30
A	Odukoya 1995 Ozhan 2014	21.259 0.848				0.000					11.08 11.83
	Randall 2007		104.579								> 11.91
		11.793	2.382	58.383	3.024	0.002			-	-	
a	Gajbhiye 2017	7 1.273	0.543	2.988	0.555	0.579					34.54
nolas	Nabeta 2009	6.244	2.351		3.675	0.000			Γ_		32.17
Anti-enolase									L -	■	
	Ozhan 2014	1.174	0.469		0.342	0.732					33.29
		2.067	0.739	5.782	1.383	0.167				-	1
	Caccavo 201	1 22.458	2.738	184.235	2.898	0.004	1	1	1 -		11.04
inin-	Inagaki 2003	8.160	2.160	30.829	3.095	0.002			-	-	27.67
Anti-laminin-1	Inagaki 2010	29.478	1.682	516.757	2.316	0.021					→ 5.96
Ant	Ozhan 2014	3.681	1.438	9.421	2.717	0.007			-	⊢	55.34
		6.340	3.151	12.757	5.178	0.000			-	•	
									_		
5	Gajbhiye 2017		0.388		-0.219	0.827			-		33.32
Anti-DDIK1	Nabeta 2010	7.772	3.624		5.268	0.000			- I -	-	33.83
ź	Ozhan 2014	0.399	0.158	1.010	-1.938	0.053		-	■		32.85
		1.434	0.241	8.528	0.396	0.692		-		-	
erla	Nip 1995	4.636	1.023	21.004	1.990	0.047	1	1	Ē		15.43
i i i	Reimand 200	1 7.578	3.294		4.765	0.000					50.77
1000	Taylor 1991										
Anti-emonth muscle	I Layiot 1997	11.304	4.072		4.656	0.000				I_	33.80
		8.041	4.442	14.557	6.884	0.000				◄	I
-5	Gajbhiye 201	7 1.316	0.561	3.089	0.631	0.528	1	T	-#-	1	33.64
Anti-runt-ruin	Nabeta 2011	8.325	3.691	18.775	5.108	0.000			.		34.26
Anti-	Ozhan 2014	5.061	1.954		3.340	0.001				∎∔	32.10
		3.815	1.249		2.351	0.019					
									1	I.	
							0.01	0.1	1	10	100

Figure 4. Forest plots exploring the link between serum anti-ANA, anti-B2 glycoprotein 1, anti-CA125, anti-carbonic anhydrase 1, anti-cardiolipin, anti-endometrial, anti-enolase, anti-laminin, anti-PDIK1L, anti-smooth muscle and anti-syntaxin autoantibodies and risk of endometriosis

ANA: Anti-nuclear antibodies, CA125: Carcinoembryonic antigen 125, PDIK1L: PDLIM1 interacting kinase 1 like

This meta-analysis is the most comprehensive study that systematically reviews and analyzes the relationship between autoantibodies and endometriosis, synthesizing over three decades of research. In addition, this study included a large sample size of 2,731 patients diagnosed with endometriosis and 4,067 healthy controls, potentially providing a definitive outcome with high accuracy and minimal bias for the general population.

It is important to note that there are limitations to this study. The laboratory data were measured in different centers using various methods and detection kits, which may have resulted in inconsistencies. Furthermore, the use of varying cutoff points across investigations could lead to inconsistencies in the outcome. In addition, the limited and insufficient data regarding the participants in the selected studies hindered our ability to examine other factors that may have an impact on heterogeneity, such as age and BMI. Therefore, future research should focus on exploring this aspect in more detail.

Conclusion

In conclusion, our meta-analysis revealed that patients diagnosed with endometriosis exhibit a greater prevalence of autoantibodies than healthy individuals. Based on the findings of this study, it is likely that autoimmune reactions are associated with the progression of endometriosis. However, further studies are required to determine the mechanism underlying autoantibody production in endometriosis. Future research should also investigate autoantibody levels during different phases of endometriosis.

Ethics

Authorship Contributions

Design: S.F., M.H.M., Data Collection or Processing: R.H.M., N.A., Analysis or Interpretation: S.F., R.H.M., N.A., M.H.M., Literature Search: M.H.M., Writing: S.F., R.H.M., N.A., M.H.M. **Conflict of Interest:** No conflict of interest was declared by the authors.

Financial Disclosure: The authors declared that this study received no financial support.

References

- Signorile PG, Viceconte R, Baldi A. New Insights in Pathogenesis of Endometriosis. Front Med (Lausanne) 2022;9:879015.
- Arafah M, Rashid S, Akhtar M. Endometriosis: A Comprehensive Review. Adv Anat Pathol 2021;28:30-43.
- Zondervan KT, Becker CM, Missmer SA. Endometriosis. N Engl J Med 2020;382:1244-56.
- 4. Parasar P, Ozcan P, Terry KL. Endometriosis: Epidemiology, Diagnosis and Clinical Management. Curr Obstet Gynecol Rep 2017;6:34-41.
- 5. Balun J, Dominick K, Cabral MD, Taubel D. Endometriosis in adolescents: a narrative review. Pediatr Med 2019;2:1-6.
- Smolarz B, Szyłło K, Romanowicz H. Endometriosis: Epidemiology, Classification, Pathogenesis, Treatment and Genetics (Review of Literature). Int J Mol Sci 2021;22:10554.

- Cousins FL, McKinnon BD, Mortlock S, Fitzgerald HC, Zhang C, Montgomery GW, et al. New concepts on the etiology of endometriosis. J Obstet Gynaecol Res 2023;49:1090-105.
- 8. Gajbhiye RK. Endometriosis and inflammatory immune responses: Indian experience. Am J Reprod Immunol 2023;89:e13590.
- 9. Nothnick WB. Treating endometriosis as an autoimmune disease. Fertil Steril 2001;76:223-31.
- Abramiuk M, Grywalska E, Małkowska P, Sierawska O, Hrynkiewicz R, Niedźwiedzka-Rystwej P. The Role of the Immune System in the Development of Endometriosis. Cells 2022;11:2028.
- 11. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Loannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 2009;6:e1000100.
- Wells GA, Shea B, O'Connell D, Welch V, Losos M, Tugwell P, editors. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. Conference 2014.
- Higgins JPT, Thomas J, Chandler J CM, Li T, Page MJ, (editors) WV. Cochrane Handbook for Systematic Reviews of Interventions. 6.4 ed2023.
- Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 2014;14:135.
- Taylor PV, Maloney MD, Campbell JM, Skerrow SM, Nip MM, Parmar R, et al. Autoreactivity in women with endometriosis. Br J Obstet Gynaecol 1991;98:680-4.
- Fernández-Shaw S, Hicks BR, Yudkin PL, Kennedy S, Barlow DH, Starkey PM. Anti-endometrial and anti-endothelial auto-antibodies in women with endometriosis. Hum Reprod 1993;8:310-5.
- Nip MM, Taylor PV, Rutherford AJ, Hancock KW. Autoantibodies and antisperm antibodies in sera and follicular fluids of infertile patients; relation to reproductive outcome after in-vitro fertilization. Hum Reprod 1995;10:2564-9.
- Odukoya OA, Wheatcroft N, Weetman AP, Cooke ID. The prevalence of endometrial immunoglobulin G antibodies in patients with endometriosis. Hum Reprod 1995;10:1214-9.
- Fernandéz-Shaw S, Kennedy SH, Hicks BR, Edmonds K, Starkey PM, Barlow DH. Anti-endometrial antibodies in women measured by an enzyme-linked immunosorbent assay. Hum Reprod 1996;11:1180-4.
- Caccavo D, Pellegrino NM, Lorusso F, Capotorto M, Vacca M, Vimercati A, et al. Anticardiolipin antibody levels in women undergoing first in vitro fertilization/embryo transfer. Hum Reprod 2007;22:2494-500.
- 21. Caccavo D, Pellegrino NM, Totaro I, Vacca MP, Selvaggi L, Depalo R. Anti-laminin-1 antibodies in sera and follicular fluid of women with endometriosis undergoing in vitro fertilization. Int J Immunopathol Pharmacol 2011;24:481-8.
- Ozhan E, Kokcu A, Yanik K, Gunaydin M. Investigation of diagnostic potentials of nine different biomarkers in endometriosis. Eur J Obstet Gynecol Reprod Biol 2014;178:128-33.
- Ek M, Roth B, Valentin L, Nordengren J, Ohlsson B. Autoantibodies common in patients with gastrointestinal diseases are not found in patients with endometriosis: A cross-sectional study. Eur J Obstet Gynecol Reprod Biol 2019;240:370-4.
- Svensson A, Roth B, Kronvall L, Ohlsson B. TSH receptor antibodies (TRAb) - A potential new biomarker for endometriosis. Eur J Obstet Gynecol Reprod Biol 2022;278:115-21.

- Szczepaňska M, Skrzypczak J, Kamieniczna M, Kurpisz M. Antizona and antisperm antibodies in women with endometriosis and/or infertility. Fertil Steril 2001;75:97-105.
- Reimand K, Talja I, Metsküla K, Kadastik U, Matt K, Uibo R. Autoantibody studies of female patients with reproductive failure. J Reprod Immunol 2001;51:167-76.
- 27. Haller K, Sarapik A, Talja I, Salumets A, Uibo R. Controlled ovarian hyperstimulation changes the prevalence of serum autoantibodies in in vitro fertilization patients. Am J Reprod Immunol 2006;56:364-70.
- Haller K, Salumets A, Grigorova M, Talja I, Salur L, Bene MC, et al. Putative predictors of antibodies against follicle-stimulating hormone in female infertility: a study based on in vitro fertilization patients. Am J Reprod Immunol 2007;57:193-200.
- 29. Yu-Rice Y, Edassery SL, Urban N, Hellstrom I, Hellstrom KE, Deng Y, et al. Selenium-Binding Protein 1 (SBP1) autoantibodies in ovarian disorders and ovarian cancer. Reproduction 2017;153:277-84.
- Toullec L, Batteux F, Santulli P, Chouzenoux S, Jeljeli M, Belmondo T, et al. High Levels of Anti-GM-CSF Antibodies in Deep Infiltrating Endometriosis. Reprod Sci 2020;27:211-7.
- Artymuk NV, Chervov VO, Danilova LN, Polenok EG, Zotova O. Threshold values of antibodies to estrogen, progesteron and benzo [a] pyrene as a risk factor for the development of endometriosis. Horm Mol Biol Clin Investig 2021;42:285-9.
- Ulcová-Gallová Z, Bouse V, Svábek L, Turek J, Rokyta Z. Endometriosis in reproductive immunology. Am J Reprod Immunol 2002;47:269-74.
- Gorai I, Ishikawa M, Onose R, Hirahara F, Minaguchi H. Antiendometrial autoantibodies are generated in patients with endometriosis. Am J Reprod Immunol 1993;29:116-23.
- 34. Kim JG, Kim CW, Moon SY, Chang YS, Lee JY. Detection of antiendometrial antibodies in sera of patients with endometriosis by dual-colored, double-labeling immunohistochemical method and western blot. Am J Reprod Immunol 1995;34:80-7.
- Hatayama H, Imai K, Kanzaki H, Higuchi T, Fujimoto M, Mori T. Detection of antiendometrial antibodies in patients with endometriosis by cell ELISA. Am J Reprod Immunol 1996;35:118-22.
- Kim CH, Chae HD, Kang BM, Chang YS, Mok JE. The immunotherapy during in vitro fertilization and embryo transfer cycles in infertile patients with endometriosis. J Obstet Gynaecol Res 1997;23:463-70.
- Nabeta M, Abe Y, Kagawa L, Haraguchi R, Kito K, Ueda M, et al. Identification of anti-α-enolase autoantibody as a novel serum marker for endometriosis. Proteomics Clin Appl 2009;3:1201-10.
- Nabeta M, Abe Y, Haraguchi R, Kito K, Kusanagi Y, Ito M. Serum anti-PDIK1L autoantibody as a novel marker for endometriosis. Fertil Steril 2010;94:2552-7.e1.
- Nabeta M, Abe Y, Takaoka Y, Kusanagi Y, Ito M. Identification of antisyntaxin 5 autoantibody as a novel serum marker of endometriosis. J Reprod Immunol 2011;91:48-55.
- Gajbhiye R, Bendigeri T, Ghuge A, Bhusane K, Begum S, Warty M, et al. Panel of Autoimmune Markers for Noninvasive Diagnosis of Minimal-Mild Endometriosis. Reprod Sci 2017;24:413-20.
- Inagaki J, Hao L, Nakatsuka M, Yasuda T, Hiramatsu Y, Shoenfeld Y, et al. A possible mechanism of autoimmune-mediated infertility in women with endometriosis. Am J Reprod Immunol 2011;66:90-9.
- 42. Gajbhiye R, Sonawani A, Khan S, Suryawanshi A, Kadam S, Warty N, et al. Identification and validation of novel serum markers for early diagnosis of endometriosis. Hum Reprod 2012;27:408-17.

- 43. Inagaki J, Sugiura-Ogasawara M, Nomizu M, Nakatsoka M, Ikuta K, Suzuki N, et al. An association of IgG anti-laminin-1 autoantibodies with endometriosis in infertile patients. Hum Reprod 2003;18:544-9.
- Mathur S, Peress MR, Williamson HO, Youmans CD, Maney SA, Garvin AJ, et al. Autoimmunity to endometrium and ovary in endometriosis. Clin Exp Immunol 1982;50:259-66.
- Kiechle FL, Quattrociocchi-Longe TM, Brinton DA. Carbonic anhydrase antibody in sera from patients with endometriosis. Am J Clin Pathol 1994;101:611-5.
- 46. Aoki K, Dudkiewicz AB, Matsuura E, Novotny M, Kaberlein G, Gleicher N. Clinical significance of beta 2-glycoprotein I-dependent anticardiolipin antibodies in the reproductive autoimmune failure syndrome: correlation with conventional antiphospholipid antibody detection systems. Am J Obstet Gynecol 1995;172:926-31.
- 47. D'Cruz OJ, Wild RA, Haas GG Jr, Reichlin M. Antibodies to carbonic anhydrase in endometriosis: prevalence, specificity, and relationship to clinical and laboratory parameters. Fertil Steril 1996;66:547-56.
- Kaider AS, Kaider BD, Janowicz PB, Roussev RG. Immunodiagnostic evaluation in women with reproductive failure. Am J Reprod Immunol 1999;42:335-46.
- 49. Randall GW, Gantt PA, Poe-Zeigler RL, Bergmann CA, Noel ME, Strawbridge WR, et al. Serum antiendometrial antibodies and diagnosis of endometriosis. Am J Reprod Immunol 2007;58:374-82.
- 50. Pillai S, Zhou GX, Arnaud P, Jiang H, Butler WJ, Zhang H. Antibodies to endometrial transferrin and alpha 2-Heremans Schmidt (HS) glycoprotein in patients with endometriosis. Am J Reprod Immunol 1996;35:483-94.
- Shanti A, Santanam N, Morales AJ, Parthasarathy S, Murphy AA. Autoantibodies to markers of oxidative stress are elevated in women with endometriosis. Fertil Steril 1999;71:1115-8.
- 52. Pasoto S, Abrao MS, Bueno C, Viana VST, Bonfá E. Antinuclear antibodies in endometriosis and systemic lupus erytematosus: comparative analysis and the observation of a new autoantibody directed to a 78 kDa protein. Fertil Steril 2002;77:S8.
- 53. Pasoto SG, Abrao MS, Viana VS, Bueno C, Leon EP, Bonfa E. Endometriosis and systemic lupus erythematosus: a comparative

evaluation of clinical manifestations and serological autoimmune phenomena. Am J Reprod Immunol 2005;53:85-93.

- Aguiar FM, Melo SB, Galvão LC, Rosa-e-Silva JC, dos Reis RM, Ferriani RA. Serological testing for celiac disease in women with endometriosis. A pilot study. Clin Exp Obstet Gynecol 2009;36:23-5.
- Vilas Boas L, Bezerra Sobrinho C, Rahal D, Augusto Capellari C, Skare T, Nisihara R. Antinuclear antibodies in patients with endometriosis: A cross-sectional study in 94 patients. Hum Immunol 2022;83:70-3.
- Mikhaleva LM, Radzinsky VE, Orazov MR, Khovanskaya TN, Sorokina AV, Mikhalev SA, et al. Current Knowledge on Endometriosis Etiology: A Systematic Review of Literature. Int J Womens Health 2021;13:525-37.
- 57. Lamceva J, Uljanovs R, Strumfa I. The Main Theories on the Pathogenesis of Endometriosis. Int J Mol Sci 2023;24:4254.
- Riccio LGC, Baracat EC, Chapron C, Batteux F, Abrão MS. The role of the B lymphocytes in endometriosis: A systematic review. J Reprod Immunol 2017;123:29-34.
- Hever A, Roth RB, Hevezi P, Marin ME, Acosta JA, Acosta H, et al. Human endometriosis is associated with plasma cells and overexpression of B lymphocyte stimulator. Proc Natl Acad Sci U S A. 2007;104:12451-6.
- Scheerer C, Bauer P, Chiantera V, Sehouli J, Kaufmann A, Mechsner S. Characterization of endometriosis-associated immune cell infiltrates (EMaICI). Arch Gynecol Obstet 2016;294:657-64.
- 61. Bulun SE, Yilmaz BD, Sison C, Miyazaki K, Bernardi L, Liu S, et al. Endometriosis. Endocr Rev 2019;40:1048-79.
- Grimaldi CM, Cleary J, Dagtas AS, Moussai D, Diamond B. Estrogen alters thresholds for B cell apoptosis and activation. J Clin Invest 2002;109:1625-33.
- Harden S, Tan TY, Ku CW, Zhou J, Chen Q, Chan JKY, et al. Peritoneal autoantibody landscape in endometriosis. bioRxiv 2022:2022.05.27.493373.
- 64. Bruner BF, Guthridge JM, Lu R, Vidal G, Kelly JA, Robertson JM, et al. Comparison of autoantibody specificities between traditional and beadbased assays in a large, diverse collection of patients with systemic lupus erythematosus and family members. Arthritis Rheum 2012;64:3677-86.